The Effect of Rapid Thermal Annealing on InAs/GaAs Quantum Dot Solar Cells
نویسندگان
چکیده
The effect of post-growth annealing on InAs/GaAs quantum dot solar cells (QDSCs) has been studied. A significant improvement in photoemission, photocurrent density, and spectral response has been observed with post-growth annealing. The optimal anneal temperature was found to be 700 ° C, which lead to an 18% improvement in current density from 4.9 mA cm -2 for as-grown sample to 5.8 mA cm -2 . We assign this enhanced performance to the reduced density of inherent point defects that was formed at the quantum dot (QD) and GaAs barrier. Post-growth thermal anneal treatment of QDSCs is demonstrated as a simple route for achieving improved device performance.
منابع مشابه
Influence of rapid thermal annealing on a 30 stack InAs/GaAs quantum dot infrared photodetector
متن کامل
Optimization of Thermalisation Loss in the Quantum Dot Solar Cells using a Finite Element Method
As thermalisation loss is the dominant loss process in the quantum dot intermediate band solar cells (QD-IBSCs), it has been investigated and calculated for a QD-IBSC, where IB is created by embedding a stack of InAs(1-x) Nx QDs with a square pyramid shape in the intrinsic layer of the AlPySb(1-y) p-i-n structure. IB, which is an optically coupled but electrically isolated mini-band, divides th...
متن کاملHigh temperature rapid thermal annealing of phosphorous ion implanted InAs/ InP quantum dots
The effect of high temperature annealing of the InAs/ InP quantum dots QDs containing a thin GaAs interlayer is investigated. The QDs are rapid thermally annealed at 750, 800, 850, and 900 °C for 30 s. The QDs with the GaAs interlayer show good thermal stability up to 850 °C as well as enhanced integrated photoluminescence PL intensity and reduced PL linewidth. The effect of high energy 450 keV...
متن کاملStacked GaAsSbN-capped InAs/GaAs quantum dots for enhanced solar cell efficiency
Different approaches have arisen aiming to exceed the Shockley-Queisser efficiency limit of solar cells. Particularly, stacking QD layers allows exploiting their unique properties, not only for intermediate-band solar cells or multiple exciton generation, but also for tandem cells in which the tunability of QD properties through the capping layer (CL) could be very useful. On one hand, GaAsSb C...
متن کاملEffects of AlGaAs energy barriers on InAs/GaAs quantum dot solar cells
We have studied the effects of AlGaAs energy barriers surrounding self-assembled InAs quantum dots in a GaAs matrix on the properties of solar cells made with multiple quantum dot layers in the active region of a photodiode. We have compared the fenced dot samples with conventional InAs/ GaAs quantum dot solar cells and with GaAs reference cells. We have found that, contrary to theoretical pred...
متن کامل